Pain intensity and Disability among governmental employees and sellers suffering from Chronic Low Back Pain

Azam Goodarzi1*, Aliakbar Torabi2, Azarmidokht Safari kermanshahi3

1. Department of Health of Education’s Ministry, Tehran, Iran.
2. Department of Physical Education & Health, Deputy Minister Advisor.

**Background:** The aim of this study was to evaluate the level of disability and pain intensity among two groups of governmental employees and sellers who suffering from chronic low back pain.

**Material and Methods:** This descriptive-analytic study was performed from Dec 2015 to Mar 2016 among employed staff members of education ministry (N = 50) and 40 sellers with chronic low back pain who were selected through non-random sampling method. The research tool was Oswetry inventory to inspect the pain intensity and level of disability of the participants. Statistical descriptive/analytic method was used to analyze data through SPSS V16.

**Results:** Totally, 90 participants included 50 employees with an average age of 45.14 ± .85 years and 40 sellers with an average age of 45.42 ± 0.98 years took part in this study. The variables as age, weight, height were the same in the two groups (P > 0.05). There were significant difference between the two groups in terms of BMI2.01 (3.42-59), pain: 0.55 (0.18-0.92), lifting disability: 0.77 (0.28 to 1.25), walking 1.03 (0.56 to 1.49), sleeping 0.26 (-0.51 -0.002), sexuality 2.07 (1.32 to 2.82), social life 0.43 (-0.82 - 0.3), mean total score of functional disability in performing activities 4.35 (1.93 to 6.77) which were better in the employed group rather than the other group.

**Conclusion:** This study showed the functional disability and related effective factors were different between employees and sellers. Therefore, categorizing individuals who suffering from back pain into homogeneous groups and investigating the effective factors of disability in each group of people are recommended.

**Keywords:** Low Back Pain, Functional disability, Oswetry questionnaire

Introduction

Low Back Pain (LBP) is the most common disorder of the skeletal-muscle in people less than 45 years (Anderson, 1999). Various factors such as biomechanical, psychological and social are involved in the incidence and remaining of its functional disabilities resulting (Dankaerts et al, 2007; O’Sullivan I, 2005). In this regard the chronic low back pain is one of the most types of pain that has affected millions of people around the world who have suffered throughout their documentary history. The chronic low back pain (CLBP) is one of the most challenging medical problems that has high prevalence and put many costs upon the developed and developing countries. In addition, it is the reason of 25% of compensation costs of disability resulted in the workplace. The annual prevalence of low back pain is in the range of 15% to 45% (Maniadakis & Gray, 2000). Due to its nature, low back pain is a benign condition. Many suffering patients will recover within a few weeks, but some residual effects of repeated recurrence of pain has been seen (Sieben et al, 2005). Although the definition of chronic pain is very difficult, but most clinical therapists have reached to a unanimous conclusion that if it remains after 6 to 12 weeks, with recurrent pain, it will be chronic pain (Lee, Chronister & Bishop,
2008; Reid, 2004). The pain duration and intensity is unpredictable and is not related with the extent of damage and type of treatment directly (Reid, 2004). Therefore the chronic low back pain (CLBP) has many major medicals, social-economic consequences (Sieben et al, 2005; Wand, O’Connell, 2008). The relation of functional disability with the several factors such as low back pain, movement disorders of the spine and physical activity’s level has been evaluated in several studies (Sieben et al, 2005; Wand & O’Connell, 2008; van Dillen et al, 2001 & van Dillen, ). Some studies have shown that people who have more severe pain also have more disability in their physical functions (Wand, O’Connell, 2008, van Dillen et al, 2001). Therefore, it seems that peoples who suffer from low back pain persuade themselves to avoid from physical activity in order to not be injured again, and this fear can cause to decrease their functional ability (Sahrmann & Sahrmann, 2002, Scholtes, Gombatto & van Dillen 2009). Some other researchers have raised recreational and physical activity in reducing the effect of increasing the level of functional disability in patients with low back pain and could decrease the incidence of low back pain in the general population (Newcomer, et al, 2000). As it seems the level of disabilities may differ in different population groups, this study intended to investigate rate of pain severity and degree of disability among two groups of education ministry employees and seller who were not employed.

**Methods and Material**

This study is a descriptive-analytical research. The statistical population consisted of 90 governmental employees and self-employed sellers that were entered into the study from Dec 2015 to Feb 2016. The study participants included 50 employees with a chronic low back pain from education’s ministry of Iran and also 40 self-employed sellers who worked 8 hours per day like employees but they had more mobility than employees. Non-random sampling method was used to select the participants. All of interested employees who suffering from LBP and participated in a health screening program in last year were invited to this study. To determine their body mass index (BMI) software version Heymsfield 1996 was used. Based on BMI all of the participants were divided into five categories: thin (less than 18.5), normal (18.5-24.99) overweight (25-29.99), obese (30-39.99) and morbidly obese (40 and more) (Roch et al, 1996). History of low back pain for at least 3 months continuously or intermittently chronic pain, daily working for 8 hours, at least high school graduating and male gender were as inclusion criteria. The exclusion criteria were included as suffering from any tumor/infection, the presence of kyphosis and scoliosis identified in the spine, stenos is spinal cord, vertebral fracture, disc herniation, and degenerative changes associated with previous surgery, hip or knee joint disease, joint damage, lower limb length differences, serious problems and severe neurological. Firstly, the objectives of study were completely explained to the participants. The consent forms were signed and then the questionnaires included demographic data and functional disability index through Persian translated & standardized Oswetry questionnaire (Mousavi et al, 2006) were completed by all the participants. This questionnaire consisted of 10 parts (pain intensity, personal work, lifting, social life, and travel) each part included 5 points and thus the maximum score (severe) for this questionnaire was 50. Its’ value was from 0 to 100 that 0 score indicated ability to perform daily activities without pain (Fairbank & Pynsent, 2000). Data were analyzed by SPSS. Kolmogorov-Smirnov test was used to determine the normality of variables. Independent T-test was used to compare two group’s mean according to the Oswetry questionnaire with significant level of P < 5%.

**Results**

Fifty employees with mean age of 45.14 ± 0.85 and 40 sellers with mean age of 45.42 ± 0.98 years completed the study. Table 1 shows the rest demographic data. There were no significant difference between two groups in terms of age, height and weight (P > 0.05). However significance difference was observed in terms of BMI (P = 0.006).

Significance differences between two groups were observed in terms of back pain (P = 0.004), lifting (P = 0.002), walking (P = 0.000), sleeping (P = 0.04), sexual activity (P = 0.000), social life (P = 0.035) and due to the total score of back pain related functional disability (P = 001.0). Table 2 shows the comparison of functional disability between two groups of employees and sellers.
The difference in pain intensity, functional

Table 1. Demographic characteristics of the both studied groups.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Employees (N = 50)</th>
<th>Sellers (N = 40)</th>
<th>P-value</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Y)</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (m)</td>
<td>-2 (-6.7-10)</td>
<td>45.14 ± .85</td>
<td>45.42 ± .98</td>
<td>88</td>
</tr>
<tr>
<td>Weight</td>
<td>3.6 (-12.8-4.5)</td>
<td>79.94 ± 11.7</td>
<td>76.77 ± 13.5</td>
<td>88</td>
</tr>
<tr>
<td>BMI</td>
<td>1.97 (.569-3.382)</td>
<td>27.53 ± 3.25</td>
<td>25.56 ± 3.43</td>
<td>.006*</td>
</tr>
</tbody>
</table>

Table 2. Comparison of two groups of participations in terms of functional disability based on Oswestry questionnaire

<table>
<thead>
<tr>
<th>Variables</th>
<th>Employees (N = 50)</th>
<th>Sellers (N = 40)</th>
<th>Mean difference (%95CI)</th>
<th>P-value</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back pain</td>
<td>1.38 ± .90</td>
<td>82 ± .87</td>
<td>55 (.18-.92)</td>
<td>004*</td>
<td>88</td>
</tr>
<tr>
<td>Individual tasks</td>
<td>52 ± .93</td>
<td>50 ± .81</td>
<td>020 (-.35-.39)</td>
<td>915</td>
<td>88</td>
</tr>
<tr>
<td>Lifting</td>
<td>2.12 ± 1.42</td>
<td>1.35 ± .89</td>
<td>77 (.28-1.25)</td>
<td>002*</td>
<td>83.63</td>
</tr>
<tr>
<td>Walking</td>
<td>1.68 ± 1.34</td>
<td>65 ± .83</td>
<td>1.03 (.56-1.49)</td>
<td>000*</td>
<td>83.19</td>
</tr>
<tr>
<td>Sitting</td>
<td>1.76 ± 1.17</td>
<td>1.47 ± .93</td>
<td>28 (-.16-.73)</td>
<td>213</td>
<td>88</td>
</tr>
<tr>
<td>Standing</td>
<td>1.58 ± 1.07</td>
<td>1.30 ± .91</td>
<td>28 (-.14-.70)</td>
<td>192</td>
<td>88</td>
</tr>
<tr>
<td>Sleeping</td>
<td>54 ± .50</td>
<td>80 ± .72</td>
<td>-.26 (-.51-.002)</td>
<td>048*</td>
<td>88</td>
</tr>
<tr>
<td>Sexual action</td>
<td>2.20 ± 2.50</td>
<td>12 ± .79</td>
<td>2.07 (1.32-2.82)</td>
<td>000*</td>
<td>60.75</td>
</tr>
<tr>
<td>Social life</td>
<td>82 ± .98</td>
<td>1.25 ± .89</td>
<td>-.43 (-.82-.03)</td>
<td>035*</td>
<td>88</td>
</tr>
<tr>
<td>Travelling</td>
<td>82 ± .96</td>
<td>80 ± .60</td>
<td>02 (-.32-.36)</td>
<td>909</td>
<td>88</td>
</tr>
<tr>
<td>Disability index</td>
<td>13.28 ± 7.41</td>
<td>8.92 ± 3.91</td>
<td>4.35 (1.93-6.77)</td>
<td>001*</td>
<td>77.35</td>
</tr>
</tbody>
</table>

Discussion

In this study the mean age of participants was more than 40 years that revealed in this age group low back pain was prevalent. This result is consistent with results of previous studies (Janwantanaku et al, 2011; Masood & Fakhrjan, 2001; By Janke, Collins & Kozak, 2007). The possible causes of low back pain in this age range can be noted the inverse relationship between age and muscle strength. This study showed that employees experienced higher low back pain than sellers. This subject is corresponded with the previous study (Mohseni Bandpey et al, 2005). These studies have reported the long time work, job stress, low satisfaction, in appropriate ergonomics as the reasons for back pain (Fanucchi et al, 2009). However, as previous study confirmed (O’Salivan, 2005), the various factors related to functional disability and its negative persistent effects should be paid attention. The relationship between low back pain and related disabilities has always been one of the topics that be interested and in numerous studies have been investigated (Peters, Vlaeyen & Weber, 2005; Gheldof et al, 2010). Different results reported regarding relationship between severity of pain and related functional disability level. Some studies showed a strong correlation between the intensity of pain and related functional disability (Guchu et al, 2012; Peters, Vlaeyen & Weber, 2005). This correlation has not observed in other studies (Ghelidof et al, 2010; Woby et al., 2004; Woby et al, 2007). It maybe indicated non-homogeneity patients with low back pain intensity.

This study indicated that low back pain of employees group and their functional disabilities were higher than sellers group. Thus the comparison between the two homogeneity groups with regard to the intensity of pain, age, height, weight, physical inactivity more than 8 hours and continuous sitting position work that can be said physical inactivity, continuous work without replacing, Inappropriate ergonomics and incident sitting position have been of the difference’s reason. This inspection also showed differences in functional disability, lifting, walking, sleep disorders, sexual action, social life and overall performance between the two groups. The functional disability of employees group was higher than other group that researcher believes the long time sitting with improper postures and also physical inactivity can be some causes of their performance problems.
According to these findings and different BMI between the two groups it seems to study the role of physical activity as well as intensity and duration of physical activity in people with low back pain is necessary (Baecke et al., 1982). In our study, Sellers had lower back pain intensity and also related disability while lifting, walking, sleeping, sex activity, social life and general disability because of their more physical activity in their workplace. Low back pain is a condition that affected people's performance somehow during 12 months, so that about 7% of adults faced this problem (Takahashi et al., 2006). There are many other effective related factors that accepted to be of pain intensity and related disability. Previous study indicated that cognitive aspects have a greater role in the functional disability compared to the pain intensity in patients with low back pain (Woby et al., 2004). Grombez and coworkers (1999) have shown that the fear and avoid moving are more effective factors in functional disability determination rate to patients with low back pain. Our study showed despite similar demographic characteristics, level of functional disability in employees was more than other group. Employees may be reduced functions and activity level because of more pain intensity and fearing of further damage and reappearing their pain (Woby et al., 2004).

**Conclusion**

Results indicated that, there were differences between in functional disability and related effective factors for different groups of patients with low back pain which can show the necessity to categorize homogeneous patient’s groups and investigating the effective factors of disability in each group of patients with low back pain. It also seems to participate in more activities through fear-avoid responses reducing and through improving physical activity levels can be reduce functional disability in patients with lower back pain.

**Conflict of Interest**

There is no conflict of interest for this article.

**Acknowledgement**

This study was supported by the Research Committee of the Physical Education and Health that is headed by Dr. Hamidi, assistant director of this department and Dr. Ziaoddini, the general manager of the Health Bureau and also sincere cooperation of ministry level officials and colleagues. We appreciate all these members. Also we appreciate all members of the Research Committee of the Education Ministry. Colleagues and Dr. Sobhani, specialist in physical medicine at Baghiyatallah University for his great assistance.

**Author contribution**

AG: Study implementation, Data collection and analysis, writing the first draft of Paper.
AT: Study design and data analysis, editing and confirming the final draft of the paper.
ASK: Study design, confirming the final draft of the paper.

**Funding/Support**

No Declared.

**References**


The difference in pain intensity, functional disability in both groups of patients with chronic low back pain (CLBP) IJMPP. 2016; 1 (2): 75-79.


How to cite this article: Goodarzi, A., Torabi, A. A., Safari kermanshahi, A., The difference in pain intensity, functional disability in both groups of patients with chronic low back pain (CLBP) IJMPP. 2016; 1 (2): 75-79.